The Institute of Electrical and Electronic Engineers (IEEE) developed another newer PON standard. Based on the Ethernet standard 802.3, EPON 802.3ah specifies a similar passive network with a range of up to 20 km. It uses WDM with the same optical frequencies as GPON and TDMA. The raw line data rate is 1.25 Gbits/s in both the downstream and upstream directions. You will sometimes hear the network referred to as Gigabit Ethernet PON or GEPON.

EPON is fully compatible with other Ethernet standards, so no conversion or encapsulation is necessary when connecting to Ethernet-based networks on either end. The same Ethernet frame is used with a payload of up to 1518 bytes. EPON does not use the CSMA/CD access method used in other versions of Ethernet. Since Ethernet is the primary networking technology used in local-area networks (LANs) and now in metro-area networks (MANs), no protocol conversion is needed.

There is also a 10-Gbit/s Ethernet version designated 802.3av. The actual line rate is 10.3125 Gbits/s. The primary mode is 10 Gbits/s upstream as well as downstream. A variation uses 10 Gbits/s downstream and 1 Gbit/s upstream. The 10-Gbit/s versions use different optical wavelengths on the fiber, 1575 to 1580 nm downstream and 1260 to 1280 nm upstream so the 10-Gbit/s system can be wavelength multiplexed on the same fiber as a standard 1-Gbit/s system.

GPON or ‘Gigabit Passive Optical Networks’ is a point-to-multipoint access mechanism.
The main characteristic of GPON is the use of passive splitters which enable a single feeding fibre from the network provider’s central location to serve multiple users within their homes and small businesses.
GPON uses the Advanced Encryption Standard (AES) for security purpose, which was designed to be efficient in both hardware and software, and supports a block length of 128 bits and key lengths of 128, 192, and 256 bits.
GPON also supports all types of Ethernet protocols